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Business Understanding 

Like most companies, Red Hat is able to gather a great deal of information over time 

describing behaviors of individuals who interact with them. For example, when an individual 

visit their website, how many times he/she has clicked through a specific product link or what 

keywords he/she used for information search. With such batch of behavioral data, Red Hat is in 

search of better methods to determine which individuals have the potential to become their future 

customers and can bring business value to the company. In fact, each individual may have 

various activities interacting with Red Hat, some of which are good indicators of great customer 

potential while others not. An accurate identification of such valuable activities is critical, for 

only when these activities are correctly distinguished, can the company take further relative 

actions to approach the relative subjects, like sending promotion email of relevant products or 

offering special discounts. This kind of targeted marketing can be cost-saving and enables Red 

Hat to efficiently prioritize resources to generate more business and to better serve their 

customers. 

From a data mining perspective, this business problem is to correctly classify each 

individual activity into one of the two classes - with business value or without any business 

value. An improved classification model will work for this prediction. To be more specific, our 

target variable is whether an activity of an individual has business value for Red Hat. 

Data Understanding 

The original data we use contains two separate tables: the people file and the activity file. 

The people file contains all of the unique people (and the corresponding characteristics) that have 

performed activities over time. Each row in the people file pertains to characteristics of a unique 



person. Each person has a unique people_id. The activity file describes all of the unique 

activities (and the corresponding activity characteristics) that each person has performed by date. 

Each row in the activity file represents a unique activity performed by a person on a certain date. 

Each activity has a unique activity_id. The data instances from these two data sources are shown 

below. 

 

The people file instance 

 

The activity file instance 

A good news is that labeled data for our defined problem is available. The business value 

outcome is described by a yes/no field attached to each unique activity in the activity file. The 

outcome field indicates whether or not each person has completed the outcome within a fixed 

window of time after each unique activity was performed. 

Nearly all features (11/14 in act file, 38/41 in people file, and 49/55 in total) contained in 

our dataset are categorical, and among them 28 from the people dataset are binary. Figure 1 and 

2 in the appendix shows the class number distribution of nearly all categorical features from both 

two data sets, except the 2 features whose number of class values exceeds 3000. From the charts 

and statistics of features extracted from the data, we can conclude that the data available to this 

problem is typical categorical  data, most features of which are with a medium number of 

categories (between 15 to 40). This kind of categorical data are welcomed by many classifiers in 



data mining techniques, like decision tree and logistic regression, where the feature vectors can 

be used to train the models with or without some further processing. Having a clear 

understanding of the data enabled us to make reasonable conversions in the next steps of data 

preparation for model training.  

Data Preparation 

Our data preparation stage mainly deals with 3 problems in the data: excessive data 

volume, missing value, and  improper data type.  

The original people data set and activity one include 189,118 and 219,7291 records 

respectively, which when merged up will be such a large volume that it will be very 

time-consuming for model training and parameter tuning. Due to time constraints and the scale 

limit of the sklearn libraries, we first randomly sampled about 40,000 activities from the activity 

file and pulled out all people records related to those activities. Also, considering the possible 

negative effect caused by data size reduction on the testing accuracy, we tested our model using 

holdout evaluation and cross-validation techniques in the further practice. 

Based on the data summary of our datasets, we found that there are several columns 

within people file that contain large amounts of missing values. Since those columns are all 

categorical variables describing people’s characteristics, we substituted these values with a new 

defined category “type 0”, which will then be smoothly processed if further dummies are needed 

to be created for these relevant fields. 

When dealing with the feature “activity date”, we considered the time-series factors like 

seasonality and trend, which may contribute to some special patterns in the data. For example, 

enterprises may be more likely to update their information system software, which is the main 



products of Red Hat, in the beginning of a new year. While tree induction models can work well 

with date-time variables, other classifiers like logistic regression only allow numeric data type. 

Thus, we first convert the date to 3 categorical fields: year, month and date.  Then with all the 

categorical features (including binary ones), we unify the data format by using integers to 

represent different categories accordingly, which make the data acceptable to most data mining 

classifiers. What’s more, considering logistic regression and SVM models should have better 

performance with sparse data, we dummy-coded every categorical variable for further model 

optimization. For example, there are 3 unique types of  “char_3” feature of every people. Instead 

of having just 1 column, we split “char_3” to 3 separate columns, char_3_1, char_3_2 and 

char_3_3, filling each cell with a binary value 0 or 1 representing the specific type.  

At last, we merged the two datasets on perople_id. The final data after we processed was 

, in which each row describes an activity and its associated person3946 rows 404 columns4 ×   

who performed it. 

Modeling and Evaluation 

1. Classifiers Choice 

Based on our data understanding, our team selected to use a supervised classification 

model, as labeled data is available. The 3 most popular data mining classification models, 

Decision Trees, Logistic Regression and Supported Vector Machine were examined and 

executed in our exercise. There are many alternatives, including k-nearest neighbors, bayesian 

classifications, neural networks etc. But the team ruled out that k-Nearest Neighbor (k-NN) 

wouldn’t be intuitive to stakeholders, since our objective was not to find records that are close to 

each other. 



2. Evaluation Metrics Choice 

Before modeling, it is essential to choose proper evaluation metrics that can reflect the 

business interest in model performance. The business problem to solve is to distinguish the 

activities that are most likely to indicate business value in the subjects. Only when these true 

positive activities are correctly distinguished, further profits could be brought to the company 

after some target marketing. But if some activities are falsely recognized as positive by the 

model, then the company will suffer a loss caused by wrong targeting cost. The other two 

occasions – truly predicted negative activities and falsely predicted negative – will not bring any 

profits or costs to the company because the relevant population are not targeted. Thus, just like 

most churn cases, Red Hat concerns true positives and false positives more over true negatives 

and false negatives. This leads us to absorb ROC-AUC value as our evaluation metric, which 

does not equally award all the true predictions like accuracy score. What’s more, AUC is also 

favorable for ranking entities according to their likelihood to be positive, which may satisfy 

stakeholders’ interests in the probabilities to be positive. At the same time, some other 

AUC-relative performance metrics like Lift are also used during the evaluation considering their 

intuitive business friendly acceptability.  

 

 

 

 

 

 



3. Models Overview 

 Decision Tree Logistic 
Regression SVM 

Pre-processing None Dummies Creation, 
Scalarization Dummies Creation 

Feature 
Selection 

Information Gain, 
Uni-variable 
Performance 

Regularization, 
Random Forest 
Feature 
Importance, 
Polynomial Feature 

Regularization， 
Random Forest 
Feature Importance, 

Complexity 
Control 

Mini_samples_split, 
Mini_leaf_split, Regularization C Regularization C 

Gamma 

Baseline AUC 0.875 0.816 0.884 

Best AUC  0.937 0.909  0.910 

Used 
Techniques Cross Validation 

Grid Search, 
Pipeline, 
Cross Validation 

Grid Search, 
Cross Validation 

 
4. Optimization and Evaluation Framework & Procedure 

Decision Tree 

Decision tree creates a model that predicts the value of the target variable by learning 

simple decision rules inferred from the data features. Since tree models are potent to deal with 

categorical features, we did not create dummies for the model training.  

The model was initially trained and tested on the small sampled dataset, where it was 

trained with 75% of the data and 25% hold out test data. Then using “entropy” criterion to train 

the baseline model got an AUC of 0.875, which is pretty high. Then for the optimization, there 



are two aspects we focused on. One is feature extraction and the other is hyper parameter 

optimization. The parameter optimization is based on the improved model with selected features. 

 In the all 58 features, not all of them are valuable. First, we did uni-variable performance 

evaluation. We calculated AUCs of only use one feature as the input to predict the target 

variable, and then compared the AUC relative to each feature. The ROC curves are shown in 

appendix Picture 3. 

Then we built models with top N features from above and got the AUC of each model, 

where N is from 1 to 57. According to the result, we found that the model with the top 27 

features, nearly half of the total, had the best AUC, which reached 0.913. Relative ROC curves 

are shown in appendix Picture 4. 

Next, we optimized two hyper parameters of the model: the min_samples_split and the 

min_samples_leaf. Since those two parameter can control the max depth of the decision tree, 

there is little need to optimize the max_depth. Based on the selected 27 top feature, we first 

trained the model with a wide range of  min_samples_splits and min_samples_leafs values. 

Then, with the pre-understanding, we set the best ranges of those two parameters as below.  

  

Auc of different min_samples_leaf and min_samples_split 



We got  the optimal parameter min_samples_split of 28 and min_samples_leaf of 6.  

To avoid overfitting, we used cross validation and larger dataset to evaluate the 

generalization performance of the tuned model. The results are shown below. (Merge_sample2 is 

double size of Merge_sample1. ) 

 Merge_sample1 Merge_sample2 
AUC using 0.25 holdout data 0.936 0.940 
AUC using cross validation 0.908 0.900 

Accuracy using cross validation 0.827 0.815 
 

From the table, we can clearly tell that after optimization the AUC has increased, which 

indicated the effectiveness of our optimization. And the consistent high AUC also proves that 

our model is not overfitting. 

Logistic Regression 

For the logistic regression model, we used the grid search techniques with pipeline to do 

the feature engineering work. The baseline model was trained with 0.75 of the small sampled 

original dataset and tested using 0.25 holdout data. The initial AUC was 0.816. Then we used 

grid search together with cross validation to tune the two parameters – penalty and C, which are 

widely used to control the model complexity. We got an improved AUC of 0.887 and a best 

hyper-parameter combination of ‘l2’ and ‘0.1’ for penalty and C. Then, based on this framework, 

we built up a pipeline to include more engineering procedures. We included standard scaler to 

preprocess the data and got an slightly improved performance(auc) of 0.893. Then we further 

added another procedure to the pipeline– to include quadratic features generated by original 

features. However, due to the large size of data (for both features and records), this tuning is not 

completed. We went on with the optimization by preprocessing all the categorical features to be 

substituted by their dummies, and this time, we got an exciting improved AUC update of 0.909. 



At last, we had feature selection in the pipeline without any preprocessing of the data to see is 

feature elimination will improve the model. However, it turned out that the model got an even 

worse performance comparing with the initial baseline model, and the new AUC is only 0.808. 

Thus, we did not do further experiment of different combination of this procedure and other 

practiced ones.  

 

Learning curve  

Based on all our practice, we can tell the best model is the one executed on sparse data ( 

data with dummies) with tuned hyper-parameters of ‘l2’ for penalty and 1.0 for C. These 

parameters not only work to control the complexity but also limit the number (or weight) of 

different features. To ensure our high AUC is not the result of overfitting, we went further for the 

testing of the optimized model by executing on a double-sized dataset and used 0.75 versus 0.25 

for training and testing. The result is that the AUC decreased by less than 0.03, which is 

acceptable considering data variance and randomness. 

 



SVM 

The library we used was sklearn.svm.SVC (Supported Vector Classification) in Python. 

As the documentation indicates, the implementation is based on libsvm. The fit time complexity 

is more than quadratic with the number of samples which makes it hard to scale to dataset with 

more than a couple of 10000 samples, thus we sampled our dataset again in order to fit the model 

to data. The dataset after another random sampling includes  .789 rows 04 columns8 × 4   

sklearn.svm.LinearSVC is implemented in terms of liblinear rather than libsvm and 

therefore has more flexibility in the choice of penalties and loss functions and should scale better 

to large numbers of samples. We decided not to use linear kernel because an SVM model with 

linear kernel is similar to logistic regression that we discussed earlier.  

We first quickly fitted the model to the training set using default hyper-parameters: 

, calculated score and plotted ROC curves on the test set..0, gamma uto, kernel rbfC = 1  = a  = ′ ′  

The result was not bad. The AUC was approximately 0.884 and the accuracy was 0.828, as 

shown by the screenshot we took (see Figure 5 in the appendix). The AUC is the main metric we 

decided to use to evaluate our model. 

We then processed to optimize the model by feature selection and hyper-parameters 

tuning. As discussed before, we would not use LinearSVC to explore SVM with a linear kernel. 

However, we may use LinearSVC to explore linear correlations in order to achieve feature 

selection. Another library we used was sklearn.feature_selection.SelectFromModel. After some 

experiments of parameters of LinearSVC, when C=0.01 it gives us 70 out of 404 remaining 

features. Feature selection alone improved both AUC score and accuracy by approximately 2%.  



After this, we applied grid search to find the optimal hyper-parameters of the SVM 

model. The library we used was sklearn.model_selection.GridSearchCV, which also came with a 

cross-validation parameter letting us specify the   fold. We performed grid search onk  

 and found the bestgamma 1e , e , e , e , e ], C [1, 0, 00, 000, 0000]′ ′ : [ −6 1 −5 1 −4 1 −3 1 −2 ′ ′ :  1 1 1 1  

parameters  Applying this pair of parameters increased AUC scorec 000, gamma e }. { = 1  = 1 −4  

and accuracy by both 1%. Below is the screenshot of the best ROC curve, with feature selection 

and hyperparameter tuning. 

 

Best ROC curve 

5. Final Optimal Algorithm Choice  

Based on all our experiments, we would like to choose the improved decision tree as our 

optimal algorithm. Although logistic regression also got a comparable performance and could 

perform well with large amounts of features, it is not that intuitive to business stakeholders as 

decision tree and the data preprocessing (to generate dummies for nearly all the features) will be 

time consuming and require considerable resource of computing and storing when the dataset is 

large. SVM got a good performance too but has a fatal disadvantage that it can only be trained by 

a limited size of data, which is very likely to contribute to overfitting or bad prediction when 



there are lots of missing values existing in the dataset. What’s more, since we thought that Red 

Hat would want to know the probabilities, which would be required to generate intuitive business 

friendly accepted metrics like Lift, SVM is also not appropriate. Thus, the decision tree model 

which is with good complexity control and very efficient will be our final choice. 

Deployment 

To apply our model to this business problem, we need to collect all features from the 

target activity and its associated customer and dummy code those features as we did at the data 

preparation stage, making these features consistent. Profitable activities can be clearly defined by 

activities being predicted to be 1. Of course, the customers performing those activities are 

profitable customers who have business value, and worth approaching. 

There might be new profitable customers and new correlations. As we collect new data, 

the model should be updated regularly. We could also collect the feedbacks of actual outcome to 

prove that our model actually works. We had no idea how Redhat collected the data. There might 

be biased data, so we should be aware of any outliers and closely monitor any abnormal drop of 

accuracy. 

The data is personal private information. The company should protect customers privacy 

when using those data to avoid the danger of information leek.  Red Hat has already encrypted 

the released dataset for this purpose.  

Due to time and scale constraints, we sampled the data randomly in order to fit the model 

to it. This might affect the accuracy of our prediction. In the future, we should be able to migrate 

our project to Hadoop ecosystem to better serve our purpose as the size of the dataset grows. 

  



Appendix 

    Figure 1: Categorical Features in Act File           Figure 2: Categorical Features in People File 

 
Figure 3: Decision Tree ROC curve of each feature columns 



 

 
Figure 4: Decision Tree  ROC curves of Top N features 

 

Figure 5:  Logistic Regression ROC Curve of the Best Model 



 

Figure 6: ROC curves of SVM without any performance tuning 

 

 

Figure 7: ROC Curve of SVM with feature selection 


