Performance Analysis of BSTs in Local DNS Caches

Ruojun Hong

November 10, 2015

Abstract

This paper does performance comparison and anal-
ysis on three binary search tree (BST) based data
structures: unbalanced BSTs, red-black trees, and
splay trees, by imitating the behavior of DNS queries
made to local DNS caches using a real world dataset.
The dataset, being DNS queries collected from a
Wireshark experiment, is maintained as original or-
der, shuffled, and sorted, and tested with three differ-
ent BSTs respectively. For every tree structure tested
by each dataset, we measure the lookup time and in-
sertion time it takes to respond to the entire set of
queries. Our result indicates that splay trees are the
most appropriate for DNS caches.

1 Introduction

The Domain Name System(DNS) resolves domain
names to [P addresses and is implemented as a hi-
erarchical and distributed database. DNS caching
allows DNS servers or individual clients to locally
store the DNS records and reuse them in the fu-
ture, thereby decreasing the need of recursion steps
and new queries to name servers. In this paper, we
focus on the efficiency of different tree data struc-
tures that might be used by local DNS caches: unbal-
anced BSTs, red-black trees and splay trees. Approx-
imately 36,000 packets under DNS or MDNS proto-
col are captured on the Ithaca College wireless net-
work at the campus center after an estimated exper-
iment time of 4 hours, during which 9,127 packets
are FQDN!queries made from individual end sys-

IFully qualified domain name(FQDN):uniquely identifies
the host’s position within the DNS hierarchical tree by spec-

tems and hence our dataset. We process the same
data but order them by three different ways: orig-
inal, shuffled and sorted, then send them into three
different tree structures respectively to test their per-
formances. The insertion time and lookup time are
measured whereas the delete time is omitted for the
reason of cache flushing. The analysis of results leads
to the conclusion that splay trees are the most appro-
priate for local DNS caches.

The remainder of this paper is organized as follows.
Section 2 describes the hypotheses and the methods
we are using, including the details of the experiment;
section 3 demonstrates and interprets the results of
the experiment. Section 4 discusses and analyzes the
experiment, and comes up with concerns and future
possibilities.

2 Methods

To test the efficiency of different tree data structures
used in local DNS cached, we imitate the behavior of
DNS queries made to the cache. The dataset is ob-
tained by running Wireshark in monitor mode on the
Ithaca College wireless LAN. Around 36,000 pack-
ets under DNS protocol from a current randomly-
selected channel are captured during an arbitrary 4-
hour period. By applying the filters, we get 9,127
FQDN queries made from different individual clients.
We maintain the original order, sort them alpha-
betically and shuffle them completely to get three
datasets with the same entries but different orders.
The pattern of original queries is not predictable.

ifying a list of names separated by dots in the path from the
referenced host to the root.

Among three tree structures, BSTs don’t have any The results of tables above are illustrated in the
balancing rules; red-black trees have stricter balanc- figures below:
ing rules than splay trees do. We assume red-black

trees and splay trees have a trade-off between up- Lookup time in milliseconds
dating(insertion) time and lookup time. Splay trees B Original
will respond much faster to sorted data, because ev- BsT -:::ﬂ“e)

ery time a node is accessed in splay trees, it gets
“splayed” to the root of the tree, and therefore clus-
tered items are likely to be stored near the root. The
performance of BSTs is assumed to be acceptable for
original and shuffled data because BSTs have a high
probability of remaining balanced with natural, ran-
dom insertions.

We use some well-known Java implementations?
to build the trees. When a query that includes an
FQDN is passed in, we first search in the tree to
find the key, if the key doesn’t exist, we then in-
sert the key-value pair into the tree. After all 9,127 =§2§:dal
FQDN queries are processed, we sum up the lookup 5t Shuffled
time and insertion time in milliseconds. The numbers
of lookup and insertion operations are also recorded, RET
but they remain constant after all operations are done
since the queries are exactly the same. We don’t
take deletion into account because in reality the DNS
cache flushes periodically on its own.

RET

Splay

=}
wm
=1

100 150 200

Insertion time in milliseconds

Splay

=)

15 30 45 60

3 Results Most of our hypotheses are proved by the results
above. The most significant disadvantage of BSTs
compared with the other two trees is their behav-
ior responding to sorted queries. This is apparently
caused by their lack of self-balancing rules. BSTs ex-
ceed the other two trees slightly in lookup time with

The tables below demonstrate lookup results and in-
sertion time in milliseconds(rounded to 2 decimal
places):

Lookup time(ms) | Original | Sorted | Shuffled | 1utp original and shuffled data. Red-black trees take
BST 5.64 167.59 | 8.45 the most time to insert while splay trees take the
RBT 8.53 6.84 16.30 least time, which is also obvious because red-black
Splay 8.82 4.21 14.56 trees have strict balancing rules while splay trees in-

sert the node to the root. Splay trees perform better

Insertion time(ms) | Original | Sorted | Shuffled |than red-black trees according to both lookup time
BST 2.91 55.62 | 3.83 and insertion time.

RBT 6.42 5.93 19.68

Splay 1.75 1.35 2.21

4 Discussion

2The implementations are open-source, in Algorithms, 4th From the experiment, we observe that speciﬁc balanc-
Edition, by Robert Sedgewick and Kevin Wayne. ing rules of each tree structure do influence its per-

formance in a significant way. From the results, we
can deduce that the pattern of original DNS queries
appears to be clustered. This is reasonable because
well-known domain names, like www.google.com,
www.amazon.com, etc., are likely to be queried fre-
quently. We assume splay trees respond to those
queries faster because its balancing rule takes advan-
tage of locality in the keys used in incoming lookup
requests. Although BSTs do show slightly better per-
formance than splay trees, we attribute the fact to
the sampling method that we use to get the data.
The number of packets captured by Wireshark is not
enough for splay trees to demonstrate their advan-
tages. Initially, we tried to reach the DNS adminis-
trator of Ithaca College Information Technology Ser-
vices to get access to the campus DNS server or some
centralized routers to get DNS queries from the cam-
pus. Unfortunately due to time constraints and pri-
vacy concerns, we are unable to access those data.
In the future, we are looking forward to more scien-
tific and appropriate sampling methods to conduct
research on.

References

[1] B. Pfaft, “ Performance Analysis of BSTs in Sys-
tem Software”.

[2] R. Sedgewick and K. Wayne, “Algorithms”, 4th
Ed.

